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Abstract: There is a requirement for data compression in several fields, including signal processing, 

digital image analysis, multimedia, and image processing. The use of approximation computation is 

widespread in mathematics.     A potential catalyst for the introduction of additional high-speed areas is the 

development of multimedia programs capable of transmitting and receiving massive volumes of data 

quickly. Due to their robust nature, these circuits can easily recover from malfunctions. They are also 

renowned for their impeccable numerical precision.     Improved system performance is attributed to the 

application.     Eliminating lag time and power consumption is a priority.     The two compressors we 

provide are more compact, faster, more powerful than our own, and they achieve the same level of precision.     

All designs were thoroughly analyzed and forecasted with regards to AOC, area, delay, power (PDP), 

margin of error (ER), range of error (ED), and CMOS technology at 45 nm.     Precision compressors save 

57.20% on energy and 56.80% on time as compared to a 4:2 compressor.     Compressors often use 8- and 

16-dada multipliers.     In terms of precision, boosters are on par with cutting-edge tools.     The proposed 

framework will be compatible with error-handling techniques, allowing for the application of features like 

image improvement and transmission.   

Keywords:  Signal – processing, Digital image analysis, Multimedia, Error tolerant, AOC, CMOS.  

1. INTRODUCTION 

For tasks like data mining and multimedia signal 

processing, less precise techniques can be applied.     

They can be substituted for the same items.     

Mathematical approximation and working with 

errors are two areas that are getting a lot more 

attention in the realm of study.     More and more 

individuals are utilizing these apps, and they 

continue to expand in size.     It is possible to alter 

digital signals with a simple transistor-based 

adder.     The incomplete output of a multiplier 

could be added to with a full adder.     The 

complexity of fixed-width multiplication circuits 

can often be reduced by employing truncation.     

A variable correction component corrects any 

errors introduced by quantization as soon as the 

size is shrunk.   

Power consumption can be reduced by employing 

approximate multipliers during bit capture.     

Partial outputs can be generated with less 

complicated circuitry by eliminating the less 

crucial inputs.     Multiple adder circuits are 

required to accommodate partial products.     The 

unfinished product reduction tree reveals that 

there are a total of four Dadda 8 x 8 multipliers 

and two Dadda 4 x 2 compressors.     The 

proposed compressors are harmful to MRE 

because they generate non-zero outputs when 

given inputs of zero.     The focus of this analysis 

shifts to an alternative scenario.     Accuracy 

improves as a result.     The first bit of each input 

is used by Sequential Shift Machines (SSMs) to 
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generate m-bit output segments.     It follows that 

replacing n by n with m x m is equivalent to n x n.     

Partial products that begin with j can be discarded 

with the help of an n-bit multiplier. In this 

scenario, j can range from 0 to n-1, and k from 1 

to the smaller of (n-j) and (n-1).     Each element 

of a Karnaugh map can be multiplied by two to 

provide a number divisible by both 4 and 8.     

Low energy consumption on the part of Wallace 

tree elements means that even modest 

preventative interventions can provide positive 

outcomes.     One type of adder regulates how 

several subproducts are combined.     A precise 

multiplier requires 26% more power than an 

approximate multiplier.   

An 8-bit Wallace tree multiplier can be emulated 

on a computer by a technique called voltage 

overscaling (VOS).     It can cause issues if routes 

have to wait longer than expected because of a 

power outage.     It has been done before, using 

techniques like approximation adders and partial 

product compression, to simplify logic.     The 

probability presented here are illogical.     The 

systematic approximation is used to calculate the 

probability statistics of partial products.   

You can make educated guesses by employing 

full-adders, half-adders, or 4-2 compressors.     

Once the error was corrected, the arithmetic 

optimization process continued.     Approximation 

arithmetic units are more efficient and need less 

space and power because of their simpler logic.     

By carefully guessing, they improve their 

precision.     In comparison to traditional PSNR 

techniques, the proposed multipliers provide 

superior image processing results.     The ED 

measures how far off an approximation of an 

input is from the true value of that input.   

Because it is relatively invariant with respect to 

circuit size, ED (NED) is useful for verifying and 

tuning approximation adders.     Both the existing 

multiplier layout and the proposed one make use 

of MRE (the old-fashioned kind of error analysis).     

In the next paragraphs, you will find an in-depth 

explanation of the report's structure.     The second 

part of the paper examines the proposed 

architecture, while the third part compares and 

contrasts the proposed multiplier with current 

approximation multipliers in terms of design and 

error metrics, and the fourth part discusses the 

application of the multipliers in image processing 

software and draws conclusions.   

 

2. LITERATURE SURVEY 

Approximate Adders for approximate 

multiplication 

It is becoming increasingly difficult to foresee the 

requirements of future CMOS applications.     The 

gap might be narrowed considerably by 

employing some cutting-edge design methods.     

There has been a recent uptick in the value of 

precise analysis.     Approximate computing is 

optimal because it makes advantage of low-power 

methods.     Bugs in the program are used for this 

purpose.     There has been a lot of progress made 

in the field of approximation computation over the 

previous decade.   Nonetheless, most of this study 

has been on adders, which are not concrete entities 

but rather representations of them.     Discussed 

here are the merits and drawbacks of today's 

estimation enhancers.     Measuring how well a 

design has been analyzed and estimated by a 

computer is possible.   

Approximate Wallace-Booth Multiplier 

Approximation computation allows for more 

effective computer processing at the nanoscale.     

It's fascinating to see what happens when 

computers make mistakes in math.     Two novel 

compressors are described in the study, each with 

a compression ratio of roughly 4:1.     Error rates 

and normalized error distances are two examples 

of computational imprecision that these systems 

may be able to tolerate because of reduced 

transistor counts, reduced delay, and reduced 

power consumption.     A Dadda multiplier can be 

expanded by a factor of four with the use of 

compressors.     In the field of image processing, 

approximation multipliers have been proved to 

perform well in several simulations.     

Multiplication of images using two multiplicand 

designs performs admirably when the mean 

squared error and peak signal-to-noise ratio of the 

sample images are both more than 50dB.   

Two variants of approximate multipliers 
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As we've established, simple calculations that can 

be applied in a variety of contexts can increase 

productivity and decrease energy consumption.     

This multiplier has a 4-2 compressor, Booth 

encoding, and approximation tree as standard 

equipment.     signed multiplication strategies with 

8, 16, or 32 bits can be evaluated and researched.     

This study provides and analyzes results from the 

45 nm model.     With respect to energy 

consumption, delay, and effectiveness, the 

Wallace-Booth approximation multiplier 

outperforms both the precise multiplier and other 

approximate multipliers mentioned in the recent 

literature.     The results from this analysis support 

the merit of the proposed strategy.   

3. EXISTING METHOD 

Due to its ability to do additions without carrying 

and adaptability to a variety of needs, the 

redundant binary (RB) approach is ideally suited 

for fast multipliers.     Two distinct techniques, 

Radix-4 Modified Booth Encoding (MBE) and 

RB, are used to generate Error Correction Words 

(ECWs).   To accommodate the RB partial output, 

the RB multiplier has an extra row added.     

When RBPP is applied in the MBE multiplier's 

second step, performance improves.     RBMPPG 

is a modified bits generator we developed to speed 

up the RBPP accumulation process.     Restricted 

Boltzmann Machine Probabilistic Graphical 

Models (RBMPPG) are used in the design of 

multipliers, and they eliminate more incorrect 

product rows than RB MBE designs.   This means 

that when each multiplier operand is at least 32 

bits in length, these designs based on RBMPPG 

require less space and produce less heat than the 

present NB multiplier designs.     There will likely 

be a 5% increase in latency, according to 

calculations.     Alternating between several RB 

multipliers can reduce the power-delay product by 

as much as 59%.   

Computers with low processing speeds are 

sufficient for data mining and multimedia signal 

processing.     Concerning blunders, if you will.     

Products that are difficult to tell apart can be 

substituted for them.     There is still a lot of work 

to be done on finding practical uses for 

approximation mathematics that are resilient to 

error.     There is a continuing rise in the number 

of people who download and utilize these apps.     

It is possible to alter digital signals with a simple 

transistor-based adder.     Full adder architectures 

manage the summation of multiplier partial 

products.     As well as fixing multiplier problems, 

truncation is often used to simplify circuits.   

To compensate for the quantization error 

introduced by the reduction in size, a variable 

correction term is introduced.     Approximation 

approaches result in a linear increase in multiplier 

power consumption as the number of partial 

products added increases.     Partial outputs can be 

generated with less complicated circuitry by 

eliminating the less crucial inputs.     In earlier 

iterations, complete adders and compressors had 

their circuitry reduced for better performance.     

The probability presented here are illogical.     The 

systematic approximation is used to calculate the 

probability statistics of partial products.     Half-

adding, full-adding, or compressing by a factor of 

4-2 will get you near.     There may be some errors 

still present, but they have been minimized as 

much as possible by not using unnecessary 

mathematical terminology.     Approximation 

arithmetic units are more efficient and consume 

less power since they lack the logic of traditional 

arithmetic units.     Careful estimation helps them 

get closer to the mark.     In terms of PSNR, the 

proposed multipliers outperform the existing 

techniques.     The error distance (ED) is the 

difference between the true answer and the 

estimated response.     Normalized Euclidean 

Distance (NED) is one frequent metric used to 

evaluate approximation adders; it remains 

constant regardless of the passage of time.     A 

mean-squared error (MRE) study is performed to 

evaluate the new multiplier design against the old.   

Technology doesn't need to be perfect to mine 

data or handle multimedia signals.     Products that 

are difficult to tell apart can be substituted for 

them.     Mathematical approximation and 

functions are still being studied by researchers for 

their potential to detect flaws in a variety of 

contexts.     These programs continually evolve to 

become more powerful and feature-rich.   

As a result, the RBR system wastes bits that could 
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be utilized to indicate an additional digit in the 

binary representation. Binary integers can be 

expressed in a wide variety of ways due to this.     

Since each digit in an RBR takes up two bits, 

two's complement differs from RBRs in this 

fundamental way.     Numerous advantages make 

RBRs a preferable alternative to classical binary 

forms.     The requirement for a second firearm to 

be carried undercover is eliminated by using a red 

dot sight (RBR).     When using the Rosberg 

representation, arithmetic operations speed up 

while bitwise operations take longer.     The sign 

of the number represented by the digit may not 

always be the same as the sign of the digit.     The 

individual digits that compose signed RBR 

numbers carry significant meaning.     Using 

relative bearing references (RBRs) simplifies the 

creation of geographic coordinates.     For an RBR 

digit, two bits are required because each bit 

represents a single digit.     One way to understand 

the repetition of some digits is to use a translation 

table.     Each bit pair in this table corresponds to a 

positive or negative integer value.   

Integer values can be calculated from any 

representation by adding the digits and 

multiplying each digit by its weight, such as the 

common binary format.     You can get twice as 

much for that home over there on the right.     

Most RBRs are capable of processing negative 

numbers.     One binary digit cannot distinguish 

between positive and negative values when a 

number is recorded repeatedly.     RBRs can use a 

variety of representations for numbers.   

The "canonical" representation of integers is often 

contrasted with the non-adjacent form or two's 

complement.   

Modified Booth encoding 

Booth's multiplication algorithm can be used to 

multiply together two binary values expressed in 

2's complement notation.     As he was studying 

diffraction at Birkbeck College in 1950, Drew 

Donald Booth came up with the idea.     As a 

result of his work on a desktop program that 

improved the speed and efficiency of data 

transmission, Booth no longer needs to develop 

mobile applications.     Booth's approach to 

incorporating PCs into the design process is novel.   

In order to understand what y1 = 0 and its implied 

bit, which is the most significant bit, mean, we 

can use Booth's N-bit multiplication Y in sign 

two's complement.     With i ranging from 0 to N-

1, it checks each byte, yi, against its predecessor, 

yi1.     Collection P won't be altered if the 

products in question are interchangeable.     If yi is 

either 0 or 1, then increasing the multiplicand by a 

factor of 2i will result in a greater P. Alternatively, 

if yi is zero or one, then a 2i-multiplication of the 

multiplicand reduces P. For maximum profit, 

safeguard that which you value most.   

Any calculator will display the multiplicand, 

product, and multiplier when performing an 

addition or subtraction.     The order of the steps is 

up to the observer, as we have already mentioned.     

The P accumulator is incremented bit by bit with 

the N least significant bits of P when I equals zero 

via a right shift operation.   

It is usual practice to transform P into a product of 

2i.     These particulars are amenable to a wide 

variety of adjustments.   

Typically, at this point, the high-order value of the 

multiplier 1 strings is modified to +1 and the low-

order value is modified to -1.     No positive 

increment is possible, hence a negative integer 

must be subtracted instead.   

Step 1: Booth Encoder and Partial Product 

Generator stage (BEPPG stage):  

Booth encoders significantly impact a product's 

performance in a certain area.     The number of 

bits that can be conserved has a direct bearing on 

the performance, efficiency, and power 

consumption of the RB summation tree or 

multiplier.     Eighteen CRBBE-4 modules run the 

initial multiplier step.     Five items now need to 

be completed.     Using bit manipulation on the 

multiplicand, we generate sixteen columns of 

RBPPG partial products.   

Step 2: Redundant Binary Adder summing tree 

stage (RBA summing stage):  

The sum of all the separate products is 128 bits.     

These four bits are added together by the 

redundant binary adders 1, 2, 3, and 4.     One 

hundred twenty-eight bit segments were generated 

by the RBA.   

Step 3: Redundant binary to NB conversion 
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stage (RB-to- NB stage):  

When translating, the whole number of RBs are 

converted to NBs.     There is a distinct delay 

pattern revealed by the Rbs result, allowing for 

bulk adjustments to be made to the numbers based 

on their arrival times.     As long as carries are 

calculated in the same way, the sum can predict 

the result of the next integers.   

 
Binary multiplication is a mathematical operation 

that digital electronics like computers can perform 

between two binary integers. There are only 

binary adders in the system.   A variety of digital 

repeater implementations exist in the field of 

computer science.   Variables are often calculated 

and used in combination during the process.     For 

the sake of making multiplication of whole 

numbers in base-10 easier, the way in which 

elementary school children are taught binary 

numbers should be altered.   

Between the years 1947 and 1949, Arthur Alec 

Robin was an apprentice and then a research 

engineer at English Electric Ltd.     As part of his 

dissertation work at Manchester, he was tasked 

with developing a hardware multiplier for the 

state-of-the-art Mark 1 computer.     Until the late 

1970s, most microcomputers couldn't perform 

multiplication.     Computer programmers utilize 

something called a "multiplication algorithm" to 

reorganize and combine partial findings.     As a 

common method, loop unwinding was frequently 

employed.     The "multiply routines" performed 

by mainframe computers were actually merely 

shifts and additions disguised as "multiply 

instructions."   

Original microprocessors lacked a multiplicative 

instruction.   The MSC-51 series and the 6809 are 

examples of high-end eight-bit microprocessors 

from the 1980s.     The two can rapidly reproduce 

themselves.     Among the Atmel families, the 

ATMega, ATTiny, and ATXMega all use the 

cutting-edge AVR 8-bit processor.   

More and more transistors were packed onto each 

board as integration progressed. A semiconductor 

may contain enough of these arithmetic adders to 

process all the intermediate values 

simultaneously. A decision was made to eliminate 

the necessity for individual adders in each CPU.   

Early digital signal processors included a single 

multiply-accumulate unit that occupied the 

majority of the semiconductor and was utilized for 

quick multiplication.   

 

4. PROPOSED METHOD 

Important tools for digital signal processing (DSP) 

are digital filters.     DSP's widespread acceptance 

stems from the fact that it provides desirable 

results.     Separation and facilitation of recovery 

are the primary functions of filters.     Irrelevant 

information and noise should be eliminated if the 

information is inaccurate or imprecise.     To 

determine a young patient's heart rate, an 

electrocardiogram (ECG) can be performed.     

There is a risk that the signal will be garbled due 

to the mother's respiration and heart rate.     It is 

impossible to investigate a hypothesis without 

first isolating its components.     Whenever a 

signal isn't functioning properly or has been 

damaged, it must undergo repair so that it can 

function normally again.     Sound quality is 

improved when a cassette with poor recording is 

filtered.     You can employ a customized camera 

or a lens with a defocused focal plane.     Such 

issues can be addressed by employing either 

analog or digital filters.     Which approach, if any, 

yields superior outcomes?     In terms of 

frequency range and amplitude, analog filters are 

extremely flexible.     Digital filters, meanwhile, 

are vastly superior.     There is no comparison 

between digital and analog filtering quality.     

Modern, state-of-the-art filtration algorithms can 

be credited to this breakthrough.     Resistance and 

capacitance components in analog filters are 

notorious for being imperfect and shifting.     The 
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power of digital filters, however, is often 

overlooked.     Disruptions to signals and how to 

fix them are common topics of conversation.     

Variables are often multiplied by fixed 

coefficients in DSP applications.     The most 

time-consuming part of DSP algorithms is the 

process of introducing, erasing, and reintroducing 

delay components.     There is a trade-off between 

the efficiency and size of an integrated circuit's 

silicon footprint.     Despite the same number of 

operations, multiplication still takes more thought 

and reasoning than addition.     When two 

variables of different dimensions are multiplied 

together, this mathematical function determines 

the result.     It is possible to build a low-cost logic 

circuit that always returns the same value by using 

binary multiplication and a known multiplier.     

Due to the expensive nature of multiplication, a 

more efficient approach in the logic circuit could 

help bring down overall expenses.     Sometimes, 

the primary operation will be a multiplication.   

The focus of this research is on developing 

software that will simplify hardware-based 

coefficient multiplication by constants.     With a 

known set of coefficients as a starting point, this 

method can be used to find practical hardware 

implementations.   

Think about both the suggested multiplier and the 

one you're using right now to get an 

approximation of the true value.     Images 

enhanced with multipliers in image-editing 

software are displayed.     Construct a reduction 

tree from some partial products you've made. In 

order to multiply, you must join the nodes that 

represent the total and the carry.     There is a lot 

of strain on the battery during the second phase.     

In this paragraph, it is used as a method of attack 

in the reduction tree.   

There is a lot of strain on the battery during the 

second phase.     In this paragraph, it is used as a 

method of attack in the reduction tree.     To 

illustrate how to acquire the multiplier, an 8-bit 

unsigned multiplier is used in this example.     

Both _7m and _7n are unsigned 8-bit inputs, so 

let's assume that.   

Similar to the word "am,n," "mnin" means "new."     

See the diagram in Figure 1.     To get these 

findings, we simply do a logical AND operation 

on n and m bits.     Booth multipliers and other 

variants of signed multiplication are incompatible 

with the proposed approximation method.   

 

 
 

It has been calculated that there is a one-in-four 

chance that the letters "am" and "n" will appear in 

the same sentence.     When arranging the 

components am,n and am,m in vertical columns, 

more than three partial products can be generated 

for the purposes of sending and receiving 

messages.     Modifications are made to both the 

outgoing and incoming signals of PM,n and gm,n.     

When the values in column 3 (originally weighted 

23) are changed to those in column 11 (originally 

weighted 211), the am and a values are exchanged 

for pm and gm.     One example of a grid segment 

displaying many goods is depicted in Figure 1.     

The modified and baseline partial product 

matrices are shown in Figure 1.   

There is a one in a hundred chance of Gm 

happening, which is much lower than am's one in 

sixteen chance.    It is eight times more likely that 

PM,n will be a modified partial product than 

gm,n.   Reconstruct the partial product matrix with 

these new values for the variables.  

Embedded system development has its greatest 

challenge in the effort to control time and power 

consumption.   Embedded systems use digital 

signal processing to deal with images and movies, 

despite the fact that this places a heavy burden on 

the CPU.    Due to time and resource constraints, 

hardware implementation of algorithms is 

typically the best option for embedded devices.    

Many methods, including image processing, linear 

transformations, digital filtering, and others, 

involve multiplying a single variable by a large 
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number of fixed values.   If these factors are 

improved, the plan's energy efficiency and 

geographical reach will be maximized.   We call 

this process "multiple constant multiplication" 

(MCM).  

The Minimum Cost Multicommodity (MCM) 

problem can be solved well with the use of graph 

dependency and CSE methods.  

The difficulties of computing tix quickly when 

there are few variables are investigated.  

While ti and x are held constant, the value of x 

can take on a wide range of numbers between 1 

and n.   In order to improve the efficiency of 

hardware filters and transformations for digital 

signal processing, it would be helpful to use 

MCM, which stands for "multiple constant 

multiplication," instead of more expensive 

multipliers.   As an alternative to constant 

multiplication, software engineers may choose for 

continuous addition and shifting processes.   Since 

integer multipliers have a lesser throughput than 

adders, certain embedded computers may not even 

have an adder, let alone a multiplier.   This 

suggests that it could be important to find ways to 

make it more efficient.   In the realm of computer 

science, a central mathematical problem is the 

Minimum Cost Matching problem (MCM).  

A new approach to solving the MCM issue is 

presented.   In terms of the amount of additions 

and subtractions required to find a solution, our 

method regularly exceeds all other published 

methods.   New features have been built into the 

improved app.   Further investigation into the 

topic will allow us to offer a more in-depth 

critique. With this, we can more precisely define 

our contribution and situate it amongst related 

research.  

A. Single Constant Multiplication (SCM) 

The product y = tx, where t is an integer or fixed-

point constant, can be broken down by adding, 

deleting, and rearranging the bits.  

I’d appreciate it if you could elaborate on your 

question or provide further background.   Single 

constant multiplication (SCM) is shown to be NP-

complete by Cappello and Steiglitz (1984).   

Choosing the decomposition that calls for the 

fewest operations is part of the problem.   To keep 

things simple, let's pretend the numbers are 

integers and think of fixed-point multiplication as 

an integer multiplier followed by a right shift.   

Like the additive chain problem [Knuth, 1969], 

the SCM problem can be solved by simply 

multiplying the solution by a constant and then 

adding another constant.   When people have the 

ability to adapt, the problem's core elements and 

the approaches used to address them undergo 

profound changes.  

By exchanging the ones in the binary constant t 

for shifts and then adding the resulting products, 

division may be broken down.   Calculating the 

product of three numbers yields the value 71: 

(6x)+(2x)+(1x) = 1000112x, where x is a positive 

integer.   It is possible to reduce multiplication to 

a series of addition and subtraction steps. This is 

accomplished by moving the zeros and deducting 

the value 2n1 (the nearest constant made up 

entirely of ones) from the result.  

Whether the circumstance is extremely negative 

or extremely positive, the answer requires 2b + 

O(1) additions and subtractions because of the 

combination of the two methods.   Specifically, t's 

bitwidth is denoted by b.   (x7 x)54x = 712 is a 

reduction of the equation 72x = 100012x.  

Due to its capacity to represent negative numbers, 

addition and subtraction are typically performed 

with the canonical signed digit (CSD) 

representation of a number [Avizienis 1961].   It is 

possible to lower the final case's optimal number 

of phases from three to two.  

The solution is 1001001CSDx, which is equal to 

1000112 when x6 is added to x3 minus x1.  

According to a 1999 research by Wu and Hasan, 

CSD can cost anywhere from 2b + O(1) in the 

worst case to 3b + O(1) under normal conditions.  

The difficulty in evaluating if CSD achieves the 

ideal split of add/subtract operations stems from 

the lack of knowledge regarding the precise worst-

case and average costs of CSD.   In order to 

determine the most efficient ways to partition 

constants as large as 12 bits, Dempster and 

Macleod (1994) developed a thorough search 

procedure.   They also showed how to solve 12-bit 

constants with shifts no larger than b + 1.   Even 

though shifts can be restrictive, Gustafsson et al. 
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(2002) were able to successfully extend their 

analysis to include constants of up to 19 bits, 

leading to optimal results.   It's a diagram, and it's 

shown in Figure 1.   While the exponential worst-

case cost of the intended decomposition is still 

being investigated, O(b) complexity or less is the 

goal in the best-case scenario.   There are 300 

randomly chosen constants with bitwidths ranging 

from 2 to 19, and the provided data contains the 

average number of additions and subtractions (y-

axis) for these values. The goal of this information 

is to make comparisons (along the x-axis) among 

the three different decomposition methods.  

The three-add-two-subtract (CSD) and two-add-

two-subtract (optimal) techniques of 45-times 

multiplication are depicted in Figure 1.   The 

edges depicting scaling factors (2-power) 

represent transformations, while the nodes 

representing sums and differences represent 

additions and powers of two, respectively.   If the 

value on the scale is negative, subtraction must be 

done.  

The optimal decomposition takes advantage of a 

different graph topology than the inefficient CSD 

decomposition does.   Unsatisfactory results have 

been found when using CSD or other digit-based 

methodologies to evaluate one type of network 

architecture.   To find the best ways to break down 

a network, exhaustive search methods, as 

described in [Dempster and Macleod 1994; 

Gustafsson et al. 2002], examine every 

conceivable configuration.  

 
The CSD method (top) and the optimum method 

(bottom) for multiplying 45 are shown below.   

Edges labeled with a power of two signify scaling 

operations, while nodes labeled with outputs 

denote arithmetic operations.   If the value on the 

scale is negative, subtraction must be done. 

 

5. SIMULATION RESULTS 

RTL 

 

INTERNAL BLOCK DIAGRAM 

 

 

Area 

 

Delay 

 

Power 
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Simulation 

 
 

6. CONCLUSION 

This work introduces a method for generating and 

transmitting data simultaneously, which can be 

used to multiple estimates.   Estimation of the 

changed partial products is performed using a 

standard OR gate.   Half-adders, full-adders, and 

4-2 compressors can be used to reduce the number 

of extra bits in the output respectively.   The n-bit 

set is approximated by Multiplier1, whereas the 

least significant bit is approximated by 

Multiplier2.   Compact and low-power, 

Multiplier1 and Multiplier2 outperform their 

higher-precision counterparts.   Savings of 87% 

and 58%, respectively, are achieved by multipliers 

1 and 2 as compared to earlier approximation 

methods for accurate multipliers in APP.   In 

comparison to its forerunners, these 

approximation multiplier designs provide higher 

levels of accuracy.   Energy and space efficiency 

are both maximized in the proposed multiplier 

designs without sacrificing output quality.  
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